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Recent research suggests that the nervous system controls

muscles by activating flexible combinations of muscle

synergies to produce a wide repertoire of movements. Muscle

synergies are like building blocks, defining characteristic

patterns of activation across multiple muscles that may be

unique to each individual, but perform similar functions. The

identification of muscle synergies has strong implications for

the organization and structure of the nervous system, providing

a mechanism by which task-level motor intentions are

translated into detailed, low-level muscle activation patterns.

Understanding the complex interplay between neural circuits

and biomechanics that give rise to muscle synergies will be

crucial to advancing our understanding of neural control

mechanisms for movement.
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Introduction
How do humans and animals successfully interact with

the complex and unpredictable dynamics of the natural

environment? In motor control, task-level goals such as

moving the hand to a target, walking through a door, or

orienting the body with respect to gravity must be trans-

lated into complex muscle activation patterns that pro-

duce the movement. Studies of motor systems ranging

from those of invertebrates to those of humans suggest

that the nervous system uses flexible combinations of just

a few muscle synergies – the elements from which complex

muscle activation patterns are constructed – to produce a

wide range of motor behaviors [1,2,3�,4�,5�,6]. We define

a muscle synergy to be a vector specifying a pattern of

relative levels of muscle activation (cf. [7,8]). The absolute
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level of activation of each muscle synergy is presumed to be

modulated by a single neural command signal. For a given

motor task, several muscle synergies are activated in vary-

ing combinations to produce the motor behavior [9].

We propose that the nervous system uses muscle syner-

gies as a set of heuristic solutions to transform task-level

goals into detailed spatiotemporal patterns of muscle

activation (Figure 1). Muscle synergies may therefore

represent the bottom of a hierarchal neural control struc-

ture in which higher neural centers operate on increas-

ingly conceptual variables related to task-level motor

performance [10–14]. This structure mirrors the series

of hierarchal transformations that occur in many sensory

processing systems [15,16]. The existence of muscle

synergies also implies that from among many possible

motor solutions, a limited set is chosen by each individual

– addressing Bernstein’s degrees-of-freedom problem

[17]. Thus, at least on behaviorally short time scales,

motor patterns are constrained by the available library

of muscle synergies, influencing motor performance.

Here we review recent findings regarding the character-

istics and functions of muscle synergies in a variety of

motor tasks. We will focus on several open questions in

the field: Do muscle synergies produce task-level func-

tions? Are muscle synergies innate or learned? How many

muscle synergies are required for task performance? We

propose that appropriate neuromechanical models can

help to answer these questions.

Muscle synergies
Do muscle synergies produce task-level functions, or are

they an artifact of a sophisticated analysis? Recently, results

from many areas have demonstrated that the activity of

muscle synergies can be correlated to functional outputs

related to task performance [1,7,18,19]. During standing

balance control, a small set of muscle synergies can be

identified that coactivate muscles throughout the limbs

and trunk. For any given perturbation, one or more muscle

synergies may be activated so that their combined influ-

ences define the resulting muscle activation pattern [9].

The activity of each muscle synergy is directionally tuned,

responding to specific directions of center-of-mass (CoM)

motion in both voluntary [8] and reactive postural adjust-

ments [3�,4�,20], suggesting an appealing link between

muscle synergy activity and higher motor centers (e.g.

[21]). In cats, muscle synergy activation has been more

specifically correlated with the direction of the force vector

produced by the hindlimb for postural stabilization [4�,20].

Further supporting the idea that a few descending

signals determine muscle activation patterns, trial-by-trial
www.sciencedirect.com
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Figure 1

Muscle synergies allow task-level neural commands to be translated into

execution-level muscle activation patterns. This hierarchal structure

mirrors that of multisensory integration systems.
variations in human postural control can be explained by

variations in muscle synergy activation levels [3�]. Robust

muscle synergies reflect structure in the data rather than

structure in the experimental design [22] because they

must be identified in datasets in which the number of

muscles and experimental conditions exceed the number

of underlying muscle synergies.

Experimental evidence also suggests that – rather than

reflecting the state of local sensory or reflex networks

during any particular postural task – muscle synergy

function is generalized across tasks [4�,20]. When postural

configuration is changed, proprioceptive information [23],

H-reflex excitability [24], and even intrinsic electrical

properties of spinal motoneurons [25] are altered. Despite

these alterations, changes in postural responses to per-

turbations in a range of different postural configurations

can be accounted for by modulating the activation levels

of a common set of muscle synergies [4�]. Further, when

there is explicit sensory loss in the visual, vestibular, or

somatosensory systems, the spatial tuning characteristics

of individual muscles are retained, suggesting that

muscle synergy patterns are unaffected by sensory def-

icits [26,27]. Similarly, muscle synergies producing loco-

motor behaviors are largely retained after deafferentation

[28]. Although sensory information appears to alter the

amplitude and timing of neural commands to muscle

synergies, muscle synergy patterns themselves do not

appear to be affected.
www.sciencedirect.com
Are muscle synergies innate or learned? In humans, rudi-

mentary postural responses emerge as early as four to five

months of age [29], suggesting that the underlying muscle

synergies may be innate to some degree. It is possible that

muscle synergies for postural control are encoded in cells at

the level of the spinal cord [30,31] or brainstem [32�] that

are similar to cortico-motoneuronal cells that coordinate

hand muscles for grasp [33��,34]. However, intersubject

variations in both muscle synergy patterns and the number

of muscle synergies suggest that muscle synergies are

shaped by adaptive processes. If this is the case, the

morphology and experience of each individual may inter-

act in unexpected ways over time [35], resulting in a unique

set of muscle synergy patterns. More subtly, these adaptive

processes themselves may vary depending on context

[36�,37]. It is therefore reasonable to expect that adaptation

may occur differently – and at different rates – for muscle

synergy patterns and for descending commands [38�].
Fundamentally, mechanics dictates that responses to pos-

tural perturbations across subjects must be similar in terms

of kinetic and kinematic variables (cf. [39]). Accordingly, in

cats, the directional tuning and force outputs of each

muscle synergy are consistent across animals, but the

specific muscular patterns of each muscle synergy vary

considerably across animals [4�]. Despite these variations,

the particular muscle synergy pattern chosen by a subject –

whether cat or human – is stable across days and does not

appear to be rapidly modified. By contrast, levels of muscle

synergy activation, which we presume to reflect descend-

ing neural commands, change both across and within

experimental conditions [3�,4�].

Finally, how many muscle synergies are required for task

performance? Clinically, muscle synergies have been

associated with constraints on movement in motor deficit,

for example, the ‘pathological synergies’ associated with

stroke [40,41]. How can we reconcile this conception of

muscle synergies with the above studies demonstrating

healthy subjects using muscle synergies as a flexible,

dextrous strategy? We hypothesize that even in healthy

subjects, motor patterns are in fact constrained by the

available library of muscle synergies, limiting motor per-

formance to well within the boundaries imposed by

musculoskeletal mechanics (cf. [33��,42]). Perhaps then,

the difference between some conditions of motor deficit

and motor skill is simply a matter of the number of

available muscle synergies and the appropriateness of

those muscle synergies [43,44].

Neuromechanical modeling
Neuromechanical modeling studies [45] may help resolve

these and other pertinent questions regarding muscle

synergies. In this section, we will outline the advantages

of this integrative approach.

Anatomically detailed biomechanical models are crucial

for estimating muscle synergy function. The function of
Current Opinion in Neurobiology 2007, 17:622–628
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any single muscle or muscle synergy cannot be examined

in isolation because of interactions between musculoske-

letal elements. As all muscles accelerate joints they do not

cross, proximal and distal muscles must be coactivated to

produce stable task function [46–48,49�]. This idea is

strikingly apparent when one considers animals without

obvious rigid structure (e.g. [50�]).

However, biomechanical models in themselves are insuf-

ficient to reveal neural control mechanisms, but rather

provide a landscape of possible solutions available to the

nervous system. In most natural behaviors, task-level

goals can be equivalently achieved with different kinetic

or kinematic strategies [51–53], which can themselves be

equivalently achieved with different spatial and temporal

patterns of muscle activation [54��,55,56]. Therefore,

biomechanical models do not uniquely determine muscle

activation patterns, nor do they predict muscle synergies,

but rather they delineate the large solution space afforded

by the musculoskeletal system for task performance.

What computations might determine the way the nervous

system coordinates muscles? One possibility is that the

nervous system explicitly encodes an appropriate trans-

formation function (e.g. an ‘inverse internal model’ [57]),

perhaps selected to optimize various performance criteria

[56,58�,59,60]. These explanations produce good esti-

mates of experimental measures, generally describing

mean neural behaviors without estimating variations from

that mean. In general, such models do not directly address

how such computations might be implemented, but

instead assume that the nervous system is unconstrained

in its plasticity [61].

Neural models that incorporate relevant properties and

constraints of neural processing are also necessary to

understand how muscle synergies might be encoded in

the nervous system. Information representation in the

nervous system may be limited by metabolic constraints,

making some computational structures more favorable

than others [16,62�]. Such ‘sparse’ representations appear

to encode explicit features in the environment in an

efficient manner [16]. Additionally, the nervous system

adapts through statistical learning processes [36�,37,63]

so that computational structures may reflect the prior

experience of the individual. In turn, conservative mech-

anisms may limit the context and extent of adaptation

[36�,64].

Although the constraints of the nervous system are import-

ant, the solution space afforded by the nervous system is

still very large. In neural systems, the same network can be

modified to produce a variety of outputs [50�,65], which in

turn can be equivalently produced by a many different

parameter states [66,67]. Therefore, neural models are also

insufficient to specify muscle synergies, providing only a

landscape of possible motor output patterns.
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We propose that muscle synergies emerge from the

interacting constraints and features of the nervous and

musculoskeletal systems. Our rationale is supported by

computational studies of motor cortex topography

demonstrating that functionally organized regions of

the cortex may arise from interactions between the bio-

mechanical characteristics of the behavioral repertoire

and the biases in the nervous system toward colocalizing

neurons that process similar information [68,69��,70]. As

an example relevant to muscle synergies, consider the

energetic constraints on the musculoskeletal and nervous

systems during locomotion. Movement patterns are ener-

getically efficient in a mechanical sense when joint

motions are functionally immobilized or linearly corre-

lated (e.g. ‘inverted-pendulum,’ or ‘spring-mass’

dynamics in locomotion [71–74]). Simultaneously, ener-

getic efficiency in neural systems – limiting the number of

neurons dedicated to encode task performance – may

favor piecewise-linear representations of complex

elements [16,52]. Thus the combined neural and mech-

anical energetic pressures may give rise to a motor control

strategy of activating linear combinations of muscle

synergies that coordinate the musculoskeletal system to

act in low-dimensional movement patterns [33��,67].

Muscle synergies may allow higher centers in the nervous

system to encode task-level variables, perhaps enabling

faster adaptation to environmental demands. In postural

control a few variables encoding overall body motion are

sufficient to specify muscle synergy activation levels over

the time-course of a postural response [54��], eliminating

the need to actively control lower-level variables, for

example, individual joints. This type of dimensional

reduction in the neuromechanical system may also explain

why simple biomechanical models can predict complex

motor behaviors [71–74], as well as compensatory strategies

in motor deficit [54��,75�]. But, it is important to note that

these low-dimensional and linear behaviors arise from

specific relationships between many nonlinear com-

ponents within the neural and musculoskeletal systems

[16,55,67,76��], and do not imply that the systems them-

selves are linear. Muscle synergies may reflect a sparse

code for motor tasks, whereby higher centers can rapidly

reconfigure the coordination of task-level commands to

muscle synergies, which in turn coordinate specific

elements in the periphery that produce functional beha-

viors [67,77]. Muscle synergies therefore represent a

solution to an ‘inverse binding problem’ typical of sensory

systems by encoding functional, task-relevant muscle

coordination patterns [78]. Thus, muscle synergies may

be stable over short-term motor adaptation, but over longer

time scales, muscle synergies themselves may also change

[38�]. A cascade of ancillary factors may influence the

specific muscle synergy patterns within each individual

[79] because of the large solution space of muscle synergies

sufficiently near the energetically optimal operating

regions defined by simple biomechanical models.
www.sciencedirect.com
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Figure 2

The force-production capability of the cat hindlimb is restricted when an identical set of muscle synergies is used for balance control in different

postural configurations (adapted from [81�]). (a) The gray polygons represent the manifold of possible endpoint forces in a neuromechanical model of

the cat hindlimb, given musculoskeletal constraints. From left to right, postural configuration is altered by increasing the ‘stance distance’, or the

anterior–posterior distance between the feet. The most natural, ‘preferred’ postural configuration in the third column is denoted by the cartoon cat.

Colored lines denote the force vectors associated with each experimentally observed muscle synergy. These synergy force vectors rotate with the limb

axis as postural configuration changes. The white polygons represent the restricted manifold of possible endpoint forces when the experimentally

identified muscle synergies are used at all postures. (b) Manifolds from (a) are overlaid with recorded postural forces. The ‘synergy-limited’ manifolds

predict the systematic rotation of postural forces as stance distance increases.
Neuromechanical models can be a practical way to esti-

mate the degree to which motor patterns are constrained

by the available library of muscle synergies and whether

these constraints influence motor performance. Owing to

adaptive processes, in statistically likely tasks, motor

performance using muscle synergies can approximate that

of an optimal controller [10,46,80�]. However, in statisti-

cally unlikely conditions, this approximation may be

degraded (cf. [52]). As an example, using a neuromech-

anical model of the cat hindlimb [81�] we demonstrated

that muscle synergies used for postural control in the cat

restrict the force-production capability of the limb

(Figure 2 [81�]), but may also reduce moments about

the CoM when the cat stands in a postural configuration

approximating its natural stance. However, when the cat

is required to assume postural configurations away from

the ‘preferred’ condition, postural forces rotate with the

sagittal limb axis, creating large moments about the CoM.
www.sciencedirect.com
This rotation is not imposed by biomechanical limita-

tions, but appears to be a consequence of using identical

muscle synergies in disparate postural configurations.

Similarly, neuromechanical models of both finger force

generation and pedaling in humans demonstrate that

muscle activation patterns corresponding to maximal task

performance appear to be retained at sub-maximal levels

[46,82], possibly in order to achieve a range of related

behaviors using the smallest number of muscle synergies.

These studies suggest that from the perspective of the

nervous system, there may be some ‘cost’ associated with

increasing the number of muscle synergies; however, this

cost has yet to be explicitly compared to that of the sub-

optimal performance that may arise as a consequence of

using fewer muscle synergies.

Finally, neuromechanical models may help explain the

redundancy that exists between neural and biomechanical
Current Opinion in Neurobiology 2007, 17:622–628
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motor control strategies. Biomechanical mechanisms may

perform computation typically attributed to active neural

control [74,83�]. This idea has been linked to Bernstein’s

[17] concept of ‘preparing the periphery’ [50]. In posture,

stabilization of the body occurs with equal frequency across

individuals through feedforward activation of muscles or

through sensory feedback control [84�]. These strategies

predict qualitatively different muscle synergy patterns. In

the first, a muscle pattern is selected to increase the

stiffness of the system, rejecting perturbations using bio-

mechanical properties of the musculature. In the second, a

muscle pattern is selected to increase the compliance of the

system to facilitate the effectiveness of the active response

[85�]. The decision to use any particular balance of these

two strategies within each individual may be a heuristic

process based on experience. Similarly, any particular

muscle synergy pattern may represent a unique coordina-

tion solution that emerges from complex, multifaceted

interactions between the components of the neuromech-

anical system. Future work investigating the robustness,

flexibility, and emergence of muscle synergies depends

upon the development of neuromechanical models as well

as evaluation techniques to quantify the interactions of

components within the models [76��].
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